

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A LI S A T I O N
EUR OP ÄIS C HES KOM ITEE FÜR NOR M UNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2009 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16008-12:2009 E

CEN

WORKSHOP

AGREEMENT

 CWA 16008-12

 August 2009

ICS 35.240.40

English version

 J/eXtensions for Financial Services (J/XFS) for the Java
Platform - Release 2009 - Part 12: Vendor Dependant Mode

Specification - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

CWA 16008-12:2009 (E)

2

Contents

FOREWORD .. 3

HISTORY .. 5

1 SCOPE ... 6

2 OVERVIEW.. 7

2.1 DESCRIPTION ... 7
2.1.1 VDM Entry triggered by J/XFS Application .. 10
2.1.2 VDM Exit triggered by J/XFS Application .. 11
2.1.3 VDM Entry and Hardware Triggers ... 12
2.1.4 VDM Exit and Hardware Triggers ... 13

3 CLASS HIERARCHY.. 14

3.1 CLASS AND INTERFACE SUMMARY .. 15

4 DEVICE BEHAVIOR .. 16

4.1 UNSUPPORTED GENERAL METHODS OF BASE CONTROL .. 16

5 CLASSES AND INTERFACES .. 17

5.1 ACCESS TO PROPERTIES ... 17
5.2 IJXFSVDMCONTROL ... 18

5.2.1 Summary ... 18
5.2.2 Properties .. 18
5.2.3 Methods .. 19

6 SUPPORT CLASSES ... 21

7 STATUS EVENT CLASSES ... 22

7.1 JXFSVDMSTATUS ... 22
7.1.1 Summary ... 22
7.1.2 Properties .. 22
7.1.3 Methods .. 23

8 ENUM CLASSES ... 24

8.1 JXFSVDMSTATUSSELECTORENUM ... 24

9 CODES .. 25

9.1 ERROR CODES ... 25
9.2 STATUS CODES .. 25
9.3 OPERATION ID CODES ... 25
9.4 NUMERICAL VALUES ... 26

10 DEVICE SERVICE INTERFACE METHODS .. 27

CWA 16008-12:2009 (E)

3

Foreword
This CWA contains the specifications that define the J/eXtensions for Financial Services (J/XFS) for the Java TM
Platform, as developed by the J/XFS Forum and endorsed by the CEN J/XFS Workshop. J/XFS provides an API
for Java applications which need to access financial devices. It is hardware independent and, by using 100%
pure Java, also operating system independent.

The CEN J/XFS Workshop gathers suppliers (among others the J/XFS Forum members), service providers as
well as banks and other financial service companies. A list of companies participating in this Workshop and in
support of this CWA is available from the CEN Secretariat , and at
http://www.cen.eu/cenorm/sectors/sectors/isss/activity/jxfs_membership.asp. The specification was agreed upon
by the J/XFS Workshop Meeting of 2009-05-6/9 in Brussels, and the final version was sent to CEN for
publication on 2009-06-12.

The specification is continuously reviewed and commented in the CEN J/XFS Workshop. The information
published in this CWA is furnished for informational purposes only. CEN makes no warranty expressed or
implied, with respect to this document. Updates of the specification will be available from the CEN J/XFS
Workshop public web pages pending their integration in a new version of the CWA (see
http://www.cen.eu/cenorm/sectors/sectors/isss/activity/jxfs_cwas.asp).

The J/XFS specifications are now further developed in the CEN J/XFS Workshop. CEN Workshops are open to
all interested parties offering to contribute. Parties interested in participating and parties wanting to submit
questions and comments for the J/XFS specifications, please contact the J/XFS Workshop Secretariat hosted in
CEN (jxfs-helpdesk@cen.eu).

Questions and comments can also be submitted to the members of the J/XFS Forum through the J/XFS Forum
web-site http://www.jxfs.net.

This CWA is composed of the following parts:
• Part 1: J/eXtensions for Financial Services (J/XFS) for the Java Platform – Release 2009 - Base

Architecture - Programmer's Reference
• Part 2: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Pin Keypad

Device Class Interface - Programmer's Reference
• Part 3: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Magnetic Stripe

& Chip Card Device Class Interface - Programmer's Reference
• Part 4: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Text

Input/Output Device Class Interface - Programmer's Reference
• Part 5: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Cash Dispenser,

Recycler and ATM Device Class Interface - Programmer's Reference
• Part 6: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Printer Device

Class Interface - Programmer's Reference
• Part 7: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Alarm Device

Class Interface - Programmer's Reference
• Part 8: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Sensors and

Indicators Unit Device Class Interface - Programmer's Reference
• Part 9: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Depository

Device Class Interface - Programmer's Reference
• Part 10: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Check

Reader/Scanner Device Class Interface - Programmer's Reference (deprecated in favour of Part 13)
• Part 11: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Camera Device

Class Interface - Programmer's Reference
• Part 12: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Vendor

Dependant Mode Specification - Programmer's Reference
• Part 13: J/eXtensions for Financial Services (J/XFS) for the Java Platform – Scanner Device Class Interface

- Programmer’s Reference (recommended replacement for Part 10)

Note: Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. The
Java Trademark Guidelines are currently available on the web at http://www.sun.com. All other trademarks are
trademarks of their respective owners.

CWA 16008-12:2009 (E)

4

This CEN Workshop Agreement is publicly available as a reference document from the National Members of
CEN : AENOR, AFNOR, ASRO, BDS, BSI, CSNI, CYS, DIN, DS, ELOT, EVS, IBN, IPQ, IST, LVS, LST,
MSA, MSZT, NEN, NSAI, ON, PKN, SEE, SIS, SIST, SFS, SN, SNV, SUTN and UNI.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be
addressed to the CEN Management Centre.

CWA 16008-12:2009 (E)

5

History

Main differences to CWA 14923-12:2004 are:

o openAcknowledges and device List properties contains additional information
o revised Description chapter and some other texts

Main differences to CWA 13937-12:2003 are:

o Remark that the VDM device service is not a normal device service as it does not control any hardware.
o Added remark to the sequence diagram where an application starts during VDM mode that this application

may issue the getDevice(...) and the adding of the listeners more early.
o Changed occurrences of JXFS_S_VDM_ACTIVE to JXFS_VDM_ACTIVE and

JXFS_S_VDM_INACTIVE to JXFS_VDM_INACTIVE
o Added a little bit more description to openAcknowledges property.
o New exception JXFS_VDM_NOT_IN_VDM when exitVDM() is called while VDM is not active by this

application.
o Additional remark at enterVDM() that these calls will be queued.
o New property deviceList that holds an array of the logical names of all controlled devices.
o Specified IJxfsVDMConst as the name of the interface holding the constants.
o Clarification of scenarios with more than one VDM.
o Claraification about compound devices.
o Exchanged "VDM control application" by "VDM application"
o Explanation what "VDM application" and "application" means.
o Added description of VDM Entry/Exit triggered by external hardware
o Added list of numerical values.

CWA 16008-12:2009 (E)

6

1 Scope
This document describes the Vendor Dependant Mode class based on the basic architecture
of J/XFS which is similar to the JavaPOS architecture. It is event driven and asynchronous.

Three basic levels are defined in JavaPOS. For J/XFS this model is extended by a
communication layer, which provides device communication that allows distribution of
applications and devices within a network. So we have the following layers in J/XFS :

• Application
• Device Control and Manager
• Device Communication
• Device Service

Application developers program against control objects and the Device Manager which
reside in the Device Control Layer. This is the usual interface between applications and
J/XFS Devices. Device Control Objects access the Device Manager to find an associated
Device Service. Device Service Objects provide the functionality to access the real device
(i.e. like a device driver).

During application startup the Device Manager is responsible for locating the desired
Device Service Object and attaching this to the requesting Device Control Object. Location
and/or routing information for the Device Manager reside in a central repository.

To support VDM devices the basic Device Control structure is extended with various
properties and methods specific to this device which are described on the following pages.

CWA 16008-12:2009 (E)

7

2 Overview

2.1 Description

This specification describes the functionality provided by the Vendor Dependent Mode
(VDM) services under J/XFS, by defining the service-specific commands that can be
issued.

In all device classes there needs to be some method of going into a vendor specific mode to
allow for capabilities which go beyond the scope of the current J/XFS specifications. A
typical usage of such a mode might be to handle some configuration or diagnostic type of
function or perhaps perform some 'off-line' testing of the device. These functions are
normally available on Self-Service devices in a mode traditionally referred to as
Maintenance Mode or Supervisor Mode and usually require operator intervention. It is
those vendor-specific functions not covered by (and not required to be covered by) J/XFS
device services that will be available once the device is in Vendor-Dependent mode.

This service provides the mechanism for switching to and from Vendor Dependent Mode.
The VDM device service can be seen as the central point through which all Enter and Exit
VDM requests are synchronised.

In the following text the expression "VDM application" refers to an application that
requests the VDM mode. The expression "application" refers to an application that uses the
J/XFS interface to access devices (and registers at the VDM device service). "VDM
application" and "application" are not mutually exclusive. That means that both
expressions may refer to the same program.

Entry into, or exit from, Vendor Dependent Mode will be initiated by a VDM application.
If initiated by a VDMapplication, this application needs to issue the appropriate command
to request entry or exit.

Once the entry request has been made, all registered applications will be notified of the
entry request by an event message. These applications must attempt to close all open
J/XFS Device Controls other than VDM specified in the event as soon as possible and then
issue an acknowledgement command to the VDM device service when ready. Once all
applications (including the application that initiated the request) have acknowledged, the
VDM device service will issue status event messages to these applications to indicate that
the system is in Vendor Dependent Mode. The application that made the request will
receive an operation complete event indicating that this application is now in charge of all
the requested devices.

The VDM device service is not a general device service as other device services because it
does not directly control any hardware. If a VDM shall be initiated by a hardware trigger,
an application has to be created controlling the hardware and making the appropriate calls
to the VDM device service.

Similarly, once the exit request has been made, all registered applications will be notified
of the exit request by an event message (including the application that made the request).
These applications must then issue an acknowledgement command to the VDM device
service immediately. Once all applications have acknowledged, the VDM device service
will issue event messages to these applications to indicate that the system has exited from
Vendor Dependent Mode. The application that made the request will receive an operation
complete event indicating that the VDM has successfully exited for all the requested
devices. The application must react only on the operation complete event and not on the
status event because several VDM requests may be queued by the VDM device service.

CWA 16008-12:2009 (E)

8

The design allows that more than one VDM application may request devices from one
VDM device service instance.

Thus, J/XFS compliant applications that do not need the system to be in Vendor Dependent
Mode, must comply with the following:
- Every J/XFS application should obtain a device control of the VDM device service,

register for all VDM entry and exit events as well as open the VDM device service.
- Before calling open() of a J/XFS Device Control, check the status of the VDM

Service. If Vendor Dependent Mode is not “Inactive”, do not open a device control
Nevertheless the application can already register for events with the device service.

- When getting a VDM entry notice, close all opened J/XFS Device Controls as soon as
possible and issue an acknowledgement for the entry to VDM.

- When getting a VDM exit notice, acknowledge at once.
- When getting a VDM exited notice, re-open any required J/XFS Device Controls.

Application VDM Device Service Device Service

addStatusListener()

getVdmStatus()

open()

OCE open()

addOperationCompleteListener()

JXFS_S_VDM_EXIT_REQUEST()

exitVDMAcknowledge()

JXFS_S_VDM_EXITED()

addStatusListener()

J/XFS Device Manager

getDevice(VDM Device Service)

getDevice(Device Service)

addOperationCompleteListener()

open()

Application starts while the VDM is active and waits until the VDM becomes inactive. Then it uses the device service.

<< Notation >>

The above sequence diagram demonstrates the correct approach that the getDevice(Device
Service) should be issued after the VDM mode has been exited. However, the application
is permitted to issue the getDevice(Device Service) and to add listeners earlier than shown
above because these calls do not involve device access. However, the application must not
call open() before the VDM has been exited.

A J/XFS compliant device service must comply to the following:
- It must unlock and close all physical devices when it receives the last close from the

Device Controls.

CWA 16008-12:2009 (E)

9

A J/XFS infrastructure may be scattered in a larger network and include several VDM
device service instances. A reasonable granularity should be one VDM device service
instance per workstation. A VDM device service can guarantee the exclusive access not
only to all devices under its control, but to a selection of its devices. Every device should
have not more than one VDM instance to guard over a Vendor Dependant Mode for this
device. More than one VDM instance per device service would require additional
synchronisation between the VDM instances. This is not covered by this specification and
therefore illegal.

In a self-service installation there must be no more than one VDM device service instance
per workstation. This restriction may not apply in a front office environment where the
infrastructure may consist of different organizational units. One example could be a
workstation with two physically connected cash dispensers that are logically connected to
other workstations. In this case it might make more sense to use one VDM device service
instance per organizational unit.

As a recommendation a hardware device used by more than one device service must not be
under control of more than one VDM device service. That means that in the case that we
have one hardware device that is driven by two or more device services then each request
for the VDM for one of these device services must result in a request for a VDM for all the
device services driving the hardware device. This has to be ensured by the VDM device
service by configuration means.

Jxfs Application

VDM Device Service
1...*

0...*

uses

Device Service
1...*

0...*

uses

1...*1...1

 responsible for

The expression "responsible for" in the chart does not mean that the VDM Device Service
calls any methods of the Device Service it is responsible for.

A VDM device service will only allow one VDM to be active at a time. This active VDM
is associated with one, requesting, application and can be for 1..n devices where n
represents all devices associated with the VDM device service.

That means that in a self-service device we have one main computer (usually a PC) that
runs several device services and application. In such a device we have one instance of the
VDM that controlls all devices connected to this workstation.

If such a Vendor Dependant Mode is used in a Front Office area where more than one
independant devices are connected to one server PC it can be that all of these independant
devices are controlled by another VDM device service instance. In such a case we can have
several dispensers connected to one PC. In this case every dispenser is controlled by
another VDM device service instance. In such a case an application has normally to be
configured which VDM device service to be used with which device. An alternative for an
application is to check all available VDM device services for their deviceList to analyse
which device services they control.

From the view of a VDM device service a VDM application is the same as a normal J/XFS
application. Every application has to open the VDM device service(s) for all devices to be
used by the application.

CWA 16008-12:2009 (E)

10

2.1.1 VDM Entry triggered by J/XFS Application

In the following example all applications have opened the VDM device service and
registered for status and operation complete events. At the beginning, the VDM is not
active.

VDM ApplicationVDM Device Service J/XFS Application #1 J/XFS Application #2

enterVDM()

JXFS_S_VDM_ENTER_REQUEST()

JXFS_S_VDM_ENTER_REQUEST()

enterVDMAcknowledge()

enterVDMAcknowledge()

JXFS_S_VDM_ENTER_REQUEST()

enterVDMAcknowledge()

JXFS_S_VDM_ENTERED()

JXFS_S_VDM_ENTERED()

JXFS_S_VDM_ENTERED()

JXFS_O_VDM_ENTER_VDM()

The application that wants the VDM mode issues an asynchronous enterVDM() command
to the VDM device service.

This changes the status of the VDM device service from JXFS_VDM_INACTIVE to
JXFS_VDM_ENTER_PENDING. All applications that have opened the VDM device
service are notified of this change by a JXFS_S_VDM_ENTER_REQUEST event.

Now all applications have to release all of the claimed devices specified by the status event
and close them. After an application has closed all of the relevant devices it has to call the
synchronous enterVDMAcknowledge() method of the VDM device control.

After all applications have notified the VDM device service that they have closed their
devices, the internal state of the VDM device service changes to JXFS_VDM_ACTIVE.
All applications will be notified of this change by a JXFS_S_VDM_ENTERED event.

Finally the application that originally requested the VDM will be notified by an operation
complete event JXFS_O_VDM_ENTER_VDM that it has now exclusive access of all the
requested devices. The exlusive access is granted only by the operation complete event and
not by the JXFS_S_VDM_ENTERED event because it can be that two applications may
request an exclusive VDM mode. In such a case the VDM would be granted to each of the
applications sequentially. In such a case the status event would not be sufficient for a VDM
application to decide if it was granted the VDM for itself or the other application.

The system is now in Vendor Dependent Mode and the Vendor Dependent application can
exclusively use the system devices in a Vendor Dependent manner.

CWA 16008-12:2009 (E)

11

2.1.2 VDM Exit triggered by J/XFS Application

In the following example all applications have opened the VDM device service and
registered for status and operation complete events. At the beginning, the VDM is active.
The exit request must come from the same application that initiated the entry request.

VDM ApplicationVDM Device Service J/XFS Application #1 J/XFS Application #2

exitVDM()

JXFS_S_VDM_EXIT_REQUEST()

JXFS_S_VDM_EXIT_REQUEST()

exitVDMAcknowledge()

exitVDMAcknowledge()

JXFS_S_VDM_EXIT_REQUEST()

exitVDMAcknowledge()

JXFS_S_VDM_EXITED()

JXFS_S_VDM_EXITED()

JXFS_S_VDM_EXITED()

JXFS_O_VDM_EXIT_VDM()

The application that wants to exit the VDM mode issues an asynchronous exitVDM()
command to the VDM device service.

This changes the status of the VDM device service from JXFS_VDM_ACTIVE to
JXFS_VDM_EXIT_PENDING. All applications that have opened the VDM device service
are notified of this change by a JXFS_S_VDM_EXIT_REQUEST event.

Now all applications have to call the synchronous exitVDMAcknowledge() method of the
VDM device control.

After all applications have notified the VDM device service that they are aware of the exit
out of the VDM mode, the internal state of the VDM device service changes to JXFS_
VDM_INACTIVE. All applications will be notified of this change by a
JXFS_S_VDM_EXITED event.

Finally the application that originally requested the exit of the VDM will be notified by an
operation complete event JXFS_O_VDM_EXIT_VDM that all applications are aware that
the VDM has been left.

CWA 16008-12:2009 (E)

12

2.1.3 VDM Entry and Hardware Triggers

The VDM is not triggered directly by a hardware switch (as in the XFS Standard), but such
a functionality can be replicated by the following mechanism.

In the following example all applications have opened the VDM device service and the
SIU device service and registered for status and operation complete events. At the
beginning, the VDM is not active.

In this scenario a hardware switch exists that may be triggered by an external user. This
hardware switch is mapped to the operatorswitch port of the SIU device.

The sequence is similar to the sequence in the chapter "VDM Entry triggered by J/XFS
Application". The difference is that the reason for the VDM application to apply for the
VDM mode is the switch that is triggered by the user and reported to the VDM application
with a SIU status event. All connections to the SIU device service are also closed on the
VDM enter request.

VDM ApplicationVDM Device Service J/XFS Application #1 J/XFS Application #2

enterVDM()

JXFS_S_VDM_ENTER_REQUEST()

JXFS_S_VDM_ENTER_REQUEST()

enterVDMAcknowledge()

enterVDMAcknowledge()

JXFS_S_VDM_ENTER_REQUEST()

enterVDMAcknowledge()

JXFS_S_VDM_ENTERED()

JXFS_S_VDM_ENTERED()

JXFS_S_VDM_ENTERED()

JXFS_O_VDM_ENTER_VDM()

SIU DS User/Switch
use switch()

JxfsSiuPortChangeStatus(JXFS_SIU_OPERATORSWITCH)

close()

JxfsOperationCompleteEvent(JXFS_RC_SUCCESSFUL)

close()

JxfsOperationCompleteEvent(JXFS_RC_SUCCESSFUL)

close()

JxfsOperationCompleteEvent(JXFS_RC_SUCCESSFUL)

CWA 16008-12:2009 (E)

13

2.1.4 VDM Exit and Hardware Triggers

In the following example all applications have opened the VDM device service and
registered for status and operation complete events. At the beginning, the VDM is active
and no application has opened the SIU device service.

In this scenario a hardware switch exists that may be triggered by an external user. This
hardware switch is mapped to the operatorswitch port of the SIU device. But because the
system is in the VDM, the SIU device service is not able to check the state of that switch.

VDM ApplicationVDM Device Service J/XFS Application #1 J/XFS Application #2

exitVDM()

JXFS_S_VDM_EXIT_REQUEST()

JXFS_S_VDM_EXIT_REQUEST()

exitVDMAcknowledge()

exitVDMAcknowledge()

JXFS_S_VDM_EXIT_REQUEST()

exitVDMAcknowledge()

JXFS_S_VDM_EXITED()

JXFS_S_VDM_EXITED()

JXFS_S_VDM_EXITED()

JXFS_O_VDM_EXIT_VDM()

SIU DS User/Switch
use switch()

open()

open()

open()

Therefore the VDM application must query the switch by proprietary means that are
outside the scope of the J/XFS standard. Once the VDM application is aware that the
switch is triggered, it requests the exit out of the VDM mode.

Afterwards every application reopens the SIU device service after having been notified
about the exit of the VDM mode.

CWA 16008-12:2009 (E)

14

3 Class Hierarchy

<<Interface>>
IJxfsBaseControl

<<Interface>>
IJxfsVDMControl

JxfsVDM

Class and Interface
Diagram for J/XFS
VDM services

CWA 16008-12:2009 (E)

15

3.1 Class and Interface Summary
The following classes and interfaces are used by the J/XFS VDM device controls.

Class
or
Inter-
face

Name Description Extends /
Implements

Inter-
face

IJxfsBaseControl Base interface for all device
controls. Contains methods
specific to all the device
controls.

--

Class JxfsBaseControl Base class for all device
controls. Implements the
methods defined in the
IJxfsBaseControl Interface.
Contains the properties
specific to all device controls.

Implements:
IJxfsBaseControl

Inter-
face

IJxfsVDMControl Base interface for all vendor
dependent mode controls.
Contains the methods specific
to all the device controls for
the vendor dependent mode
category.

Extends:
IJxfsBaseControl

Class JxfsVDM Class for the Vendor
Dependent Mode control

IJxfsVDMControl

Inter-
face

IJxfsEventNotification Includes one callback method
per event type. The Device
Service calls these methods to
cause events to be delivered to
the application.

--

CWA 16008-12:2009 (E)

16

4 Device behavior

This device service does not access any device as it is a logical device service.

4.1 Unsupported General Methods of base Control

The following base methods are not supported and will throw a
JXFS_E_NO_HARDWARE exception when called:

getPhysicalDeviceDescription()
getPhysicalDeviceName()
getFirmwareStatus()

The updateFirmware() method will throw a JXFS_E_NOHARDWARE exception when
called.

A JXFS_E_NOT_SUPPORTED exception is returned by the following methods:

getDeviceFirmwareVersion()
getRepositoryFirmwareVersion()
wakeUpFromPowerSave()

The isPowerSaveModeSupported() method will return the value true and not throw an
exception.

CWA 16008-12:2009 (E)

17

5 Classes and Interfaces

All asynchroneous methods return an identificationID. If a method cannot be processed
immediately a JxfsException is thrown.

After processing has taken place, a JxfsOperationComplete – Event is generated which
contains detailed information about the status of the operation, i.e. if it failed or succeeded,
and eventually additional data as a result.

The Constants, Error Codes, Exceptions, Status Codes and Support classes that are used in
the methods are described in special chapters at the end of the documentation.

5.1 Access to properties
Please note the following when determining the meaning of a property's Access:
R The property is read only.
W The property is write only.
R/W The property may be read or written.

To read or write a property the application must use the appropriate methods as defined in
the JavaBeans specification.

5.1.1.1 getProperty
Syntax Property getProperty(void) throws JxfsException;
Description Returns the requested property.
Parameter None
Event No additional events are generated.
Exceptions Some possible JxfsException value codes. See section on

JxfsExceptions for other JxfsException value codes.
 JXFS_E_CLOSED

JXFS_E_REMOTE
JXFS_E_UNREGISTERED

5.1.1.2 setProperty
Syntax void setProperty(Property) throws JxfsException;
Description Sets the requested property.
Parameter Single parameter of property type.
Event No additional events are generated.
Exceptions Some possible JxfsException value codes. See section on

JxfsExceptions for other JxfsException value codes.
 JXFS_E_CLOSED

JXFS_E_PARAMETER_INVALID
JXFS_E_REMOTE
JXFS_E_UNREGISTERED

CWA 16008-12:2009 (E)

18

5.2 IJxfsVDMControl
The J/XFS Vendor Dependent Mode Device Control Subclass is defined in
JxfsVDMControl and is a subclass of JxfsBaseControl. Its interface is defined in
IJxfsVDMControl which is a subclass of IJxfsBaseControl. The intent of the J/XFS
Vendor Dependent Mode Device Control object is to allow data and control to pass
between the application and the Vendor Dependent Mode device service code so that the
required functions can be performed.

5.2.1 Summary

Property Type Access Initialized after
openAcknowledges int R open(),enterVDM(),

exitVDM()
vdmStatus JxfsVDMStatus R open()
deviceList java.lang.String[] R open()

Method Return May be used after
getProperty Property open()
setProperty Property open()
enterVDM identificationID open(),exitVDM()
enterVDMAcknowledge void enterVDM()
exitVDM identificationID enterVDM()
exitVDMAcknowledge void exitVDM()

Event May occur after
Status Event
 JXFS_S_VDM

 JXFS_S_VDM_ENTER_REQUEST
 JXFS_S_VDM_ENTERED
 JXFS_S_VDM_EXIT_REQUEST
 JXFS_S_VDM_EXITED

open(), close(), claim(),
release()

enterVDM (),
enterVDMAcknowledge (),
exitVDM(),
exitVDMAcknowledge()

JxfsOperationCompleteEvent
 JXFS_O_VDM_ENTER_VDM
 JXFS_O_VDM_EXIT_VDM

enterVDMAcknowledge ()
exitVDMAcknowledge ()

5.2.2 Properties

5.2.2.1 openAcknowledges
Type int
Initial Value 0
Description Number of pending application acknowledges.
Event none

5.2.2.2 vdmStatus
Type JxfsVDMStatus
Initial Value a JxfsVDMStatus (for initial values see JxfsVDMStatus)
Description see JxfsVDMStatus
Event If the value of this property changes, the Device Service will send all

registered StatusListeners a JxfsStatusEvent with the following status
value :

Events JXFS_S_VDM_ENTER_REQUEST
JXFS_S_VDM_ENTERED
JXFS_S_VDM_EXIT_REQUEST
JXFS_S_VDM_EXITED

CWA 16008-12:2009 (E)

19

5.2.2.3 deviceList
Type java.lang.String[]
Initial Value null
Description This array contains all logical device names of the devices that are

under the control of this VDM instance.
All elements of the array have to be valid and not empty strings. A
value of null is not allowed after the first successfull open of the
VDM.
To be able to provide an unambiguous list of device names, all device
names for device services instantiated on one workstation must be
unambiguous.

Event none

5.2.3 Methods

5.2.3.1 enterVDM
Syntax identificationID enterVDM(java.lang.String logicalDevices[]) throws

JxfsException;
Description This command is issued by an application to indicate a logical request

to enter Vendor Dependent Mode. The VDM Device Service will then
indicate the request to all registered applications by sending a
JXFS_S_VDM_ENTER_REQUEST event message and then wait for
an acknowledgement back from each registered application before
putting the system into Vendor Dependent Mode. The VDM prevail
until all applications have acknowledged, at which time the status will
change to JXFS_S_VDM_ENTERED and the enterVDM() completes.
If another application has also requested the VDM, the
JxfsOperationCompleteEvent might be sent after the other application
has been granted VDM and afterwards released the VDM. That means
that VDM request will be queued.

Parameter Type Name Meaning
 java.lang.String[] logicalDevices Array with names of logical

devices that shall be exclusively
used in the VDM. An empty array
with no Strings is not allowed. A
null value for this method means
that all devices under the control
of the VDM device service shall
be requested for the VDM mode.

Exceptions No additional exceptions generated.
Events Additional Events can be generated :
 JxfsOperationCompleteEvent

When a enterVDM () operation is completed a
JxfsOperationCompleteEvent will be sent by J/XFS VDM device
service to all registered IJxfsOperationCompleteListeners with the
following data:

 Field Value
 operationID JXFS_O_VDM_ENTER_VDM
 identificationID The corresponding ID
 result Common or device dependent error code. (See

section on Error Codes).
 data none

CWA 16008-12:2009 (E)

20

5.2.3.2 enterVDMAcknowledge
Syntax void enterVDMAcknowledge() throws JxfsException;
Description This command is issued by a registered application as an

acknowledgement to the JXFS_S_VDM_ENTER_REQUEST event
message and it indicates that the application is ready for the system to
enter Vendor Dependent Mode.

Parameter none
Exceptions No additional exceptions generated.

5.2.3.3 exitVDM
Syntax identificationID exitVDM() throws JxfsException;
Description This command is issued by an application to indicate a logical request

to exit Vendor Dependent Mode. The VDM device service will then
indicate the request to all registered applications by sending a
JXFS_S_VDM_EXIT_REQUEST event message and then wait for an
acknowledgement back from each registered application before
removing the system from Vendor Dependent Mode.

Parameter none
Exceptions Additional Exception:
 Value Meaning
 JXFS_E_VDM_NOT_IN_VDM The VDM cannot be exited as it is

not engaged by this application.
Events Additional Events can be generated :
 JxfsOperationCompleteEvent

When a exitVDM() operation is completed a
JxfsOperationCompleteEvent will be sent by J/XFS VDM Device
Control to all registered IJxfsOperationCompleteListeners with the
following data:

 Field Value
 operationID JXFS_O_VDM_EXIT_VDM
 identificationID The corresponding ID
 result Common or device dependent error code. (See

section on Error Codes).
 data none

5.2.3.4 exitVDMAcknowledge
Syntax void exitVDMAcknowledge() throws JxfsException;
Description This command is issued by a registered application as an

acknowledgement to the JXFS_S_VDM_EXIT_REQUEST event
message and it indicates that the application is ready for the system to
exit Vendor Dependent Mode.

Parameter none
Exceptions No additional exceptions generated.

CWA 16008-12:2009 (E)

21

6 Support Classes
No support classes are used by this service.

CWA 16008-12:2009 (E)

22

7 Status Event Classes
If the service status or the value of the vdmStatus property changes the appropriate class is
returned as details via a JxfsStatusEvent.

7.1 JxfsVDMStatus
This class specifies the status of the current VDM service mode.

7.1.1 Summary
Implements : Serializable Extends : JxfsType

Property Type Acces

s
Initialized after

vdmStatus int R
logicalDevices java.lang.String[] R

Constructor Parameter Parameter-Type
JxfsVDMStatus vdmStatus int
 logicalDevices java.lang.String[]

Method Return Meaning
getProperty Property
isVDMActive boolean returns true if the vdmStatus is

JXFS_ VDM_ACTIVE
isVDMEnterPending boolean returns true if the vdmStatus is

JXFS_ VDM_ENTER_PENDING
isVDMExitPending boolean returns true if the vdmStatus is

JXFS_ VDM_EXIT_PENDING
isVDMInactive boolean returns true if the vdmStatus is

JXFS_VDM_INACTIVE

Event May occur after
Status Event
 JXFS_S_VDM_ENTER_REQUEST
 JXFS_S_VDM_ENTERED
 JXFS_S_VDM_EXIT_REQUEST
 JXFS_S_VDM_EXITED

enterVDM(),
enterVDMAcknowledge(),
exitVDM(),
exitVDMAcknowledge()

7.1.2 Properties

7.1.2.1 vdmStatus
Type int
Initial Value JXFS_VDM_INACTIVE
Description Specifies the service state as one of the following flags:
 JXFS_VDM_ACTIVE

JXFS_VDM_ENTER_PENDING
JXFS_VDM_EXIT_PENDING
JXFS_VDM_INACTIVE

CWA 16008-12:2009 (E)

23

7.1.2.2 logicalDevices
Type java.lang.String[]
Initial Value null
Description This array contains a list of the logical devices names that are relevant

for this VDM. If the VDM is requested, all applications have to release
and close all the devices in this list. If this property is equal to null, all
devices under control of the VDM device service have to be released
and closed. An array with no initialized string is not allowed.
After a change to the JXFS_VDM_INACTIVE state, all
JxfsVDMStatus instances received from the VDM device service will
deliver a null as the logicalDevices property.

7.1.3 Methods

7.1.3.1 isVDMActive
Syntax boolean isVDMActive() throws JxfsException;
Description Returns true if the status of the service is JXFS_ VDM_ACTIVE
Parameter None

7.1.3.2 isVDMEnterPending
Syntax boolean isVDMEnterPending() throws JxfsException;
Description Returns true if the status of the service is JXFS_

VDM_ENTER_PENDING
Parameter None

7.1.3.3 isVDMExitPending
Syntax boolean isVDMExitPending() throws JxfsException;
Description Returns true if the status of the service is

JXFS_VDM_EXIT_PENDING
Parameter None

7.1.3.4 isVDMInactive
Syntax boolean isVDMInactive() throws JxfsException;
Description Returns true if the status of the service is JXFS_VDM_INACTIVE
Parameter None

CWA 16008-12:2009 (E)

24

8 Enum Classes

All enumerations are defined in terms of a class. The following describes all the
enumerated classes.

8.1 JxfsVDMStatusSelectorEnum

This enumeration class is used for the base getStatus(java.util.List) method.

Extends Implements
JxfsStatusSelectorEnum

Field Returned Type Description
vdmStatus JxfsVDMStatus Information about the current state of the

VDM.
deviceList java.lang.String[] Array of logical devices under VDM

control

CWA 16008-12:2009 (E)

25

9 Codes

9.1 Error Codes

Value Meaning
JXFS_E_VDM_NOT_IN_VDM The operation cannot be executed because

the VDM is not active.

9.2 Status Codes

9.2.1.1 General Status Codes
General Status Codes that specify a value change.

Value Meaning
JXFS_S_VDM The general JxfsStatus of the device service

changed.
JXFS_S_VDM_ENTER_REQUEST An application has called the enterVDM()

method. The details property contains a
reference to a current instance of the
vdmStatus property.

JXFS_S_VDM_ENTERED The system has entered the vendor
dependent mode. The details property
contains a reference to a current instance of
the vdmStatus property.

JXFS_S_VDM_EXIT_REQUEST An application has called the exitVDM()
method. The details property contains a
reference to a current instance of the
vdmStatus property.

JXFS_S_VDM_EXITED The system has exited the vendor dependent
mode. The details property contains a
reference to a current instance of the
vdmStatus property.

9.3 Operation ID Codes
Following codes specify the operation which generated the JxfsOperationCompleteEvent.

Value Method
JXFS_O_VDM_ENTER_REQUEST enterVDM()
JXFS_O_VDM_EXIT_REQUEST exitVDM()

CWA 16008-12:2009 (E)

26

9.4 Numerical values

Value Meaning
13000 JXFS_S_VDM
13001 JXFS_S_VDM_ENTER_REQUEST
13002 JXFS_S_VDM_ENTERED
13003 JXFS_S_VDM_EXIT_REQUEST
13004 JXFS_S_VDM_EXITED
13005 JXFS_O_VDM_ENTER_VDM
13006 JXFS_O_VDM_EXIT_VDM
13007 JXFS_E_VDM_NOT_IN_VDM
13008 JXFS_VDM_ACTIVE
13009 JXFS_VDM_ENTER_PENDING
13010 JXFS_VDM_EXIT_PENDING
13011 JXFS_VDM_INACTIVE

CWA 16008-12:2009 (E)

27

10 Device Service Interface Methods
The Device Service interface is common to all device services of this device type. It is
used by the Device Controls to access the functionality of the device. This interface has to
be implemented by any J/XFS Device Service.

The device type specific Device Service interface is similar to the Device Control
interface. All device specific method calls are extended by an additional parameter (int
control_id). This is always added as the last parameter in every operation.

The name of the device service interface is IJxfsVdmService. It is extended from
IJxfsBaseService. The constants are defined in the IJxfsVDMConst interface.

